
Neural Networks for Named Entity
Recognition

Programming Assignment 4
CS 224N / Ling 284

Due Date: Dec. 5th, 2012

This assignment may be done individually or in groups of two. We
strongly encourage collaboration; however your submission must include a
statement describing the contributions of each collaborator. See the collab-
oration policy on the website.1

Please read this assignment soon and make sure that you are able to
access the relevant files and compile the code. Especially if your multivari-
ate calculus experience is limited, start working early so that you will have
ample time to discover stumbling blocks and ask questions. This assignment
requires you to derive new equations using the techniques from class and then
implement them. Depending on your background this might be significantly
harder than previous assignments. The assignment is scored out of 100 and
will be normalized afterwards to fit 30% of your final grade. The required
items you need to implement are marked with TODO.

1 Setup

Copy over the new code to your local directory and make sure you can compile
the code without errors.
cd

mkdir -p cs224n/pa4

cd cs224n/pa4

cp -r /afs/ir/class/cs224n/pa4/java .

cp -r /afs/ir/class/cs224n/pa4/data .

1http://class.stanford.edu/cs224n/Fall2012/pages/assignments
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cd java

ant

You can open the train and dev data files in any text editor. The included
README file also explains how to set up the project in Eclipse, which we
highly recommend for debugging. This assignment is more complex than
previous ones and you will need to be able to investigate your variables in a
good debugger.

2 Introduction

In this exercise, you will implement a neural network for named entity recog-
nition (NER). Before starting on the programming exercise, we strongly rec-
ommend watching the lectures. The starter code is very rudimentary and
includes the following files:

Java files

Datum.java - A class to store the words and their labels. No need to
change anything in here.
[?] FeatureFactory.java - A class that reads in the train and test data.
You want to modify at least one function in here, that reads in the vectors
and vocabulary (the set of words we will use).
[?] NER.java - Main function to start with and to run.
[?] WindowModel.java - This is where you might want to implement
training and testing the neural network model.
? indicates files you will need to complete

Data files

train - The labeled training data that is being read in by the FeatureFac-
tory
dev - The labeled dev set you will try to push performance on
vocab.txt - Text file with list of words, one per line, in the same order
as the wordVectors file
wordVectors.txt - Word vectors, one per row. You will need to read in
this file
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3 The Neural Network

In class we described a feedforward neural network and how to use and train
it for named entity recognition with multiple classes. In this exercise, you will
implement such a network for learning a single named entity class PERSON.
You will derive and implement the word embedding layer, the feedforward
neural network and the corresponding backpropagation training algorithm.
Furthermore, you will learn how to make sure your neural network code is
bug free by checking your gradients. As with any machine learning method
we will analyze our errors, visualize model variants and tune various model
parameters.

3.1 Model overview

The neural network has 3 layers – an input layer, a hidden layer and an
output layer. Recall that our inputs are the word vectors which are also
model parameters that we will optimize. Our top layer will be a logistic
regression classifier. The final cost function (also often called loss function)
will be the binary cross-entropy error, which is similar to the general cross
entropy but for only two classes.

The idea of the model is that in order to classify each word, you take
as input that word’s vector representation and the vector representations of
the words in its context. These vectors constitute your “features”. These
features are the input to a neural network which is a function that will first
transform them into a “hidden” vector and then use that vector to predict a
probability of how likely the window’s center word is of a certain class.

3.2 Word vectors and context windows

Assume you have the following sequence of words in your training set

George is happy about the election outcome .

Each word is associated with a label y defining that word as either PERSON

or not any named entity O . We define PERSON to be class 1 (y = 1) and O

to be class 0. Each word is also associated with an index into a vocabulary,
so the word George might have index 303.

All word vectors are n-dimensional and saved in a large matrix L ∈ Rn×V ,
where V is the size of the vocabulary. We will provide you with an initial
set of word vectors that have been trained with an unsupervised method [1].
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The vectors are n = 50 dimensional.
TODO: You will have to load these vectors into your Java program and save
them into a matrix along with their indices and the words they represent.

Assume that at the first location of the sentence we have vector x1, which
was retrieved via the index of the word George. Similarly, we can represent
the whole sentence as a list of vectors (x1, x2, . . . , x8). When we want to
classify the first and last word and include their context, we will need special
beginning and end tokens, which we define as <s> and </s> respectively. If
we use a context size of C, we will have to pad each input of the training
corpus with C many of these special tokens. For simplicity, let us use C = 1.
We define the vector corresponding to the begin padding as xs and for the
end padding as xe. Hence, we will get the following sequence of vectors:

(xs, x1, x2, . . . , x8, xe).

For this training corpus, we have the following windows that we will give
as input to the neural network:

{[xs, x1, x2], [x1, x2, x3], [x2, x3, x4], . . . , [x6, x7, x8], [x7, x8, xe])}

Each window is associated with the label of the center word. So for this
sequence, we get the labels (1, 0, 0, 0, 0, 0, 0, 0). Note that the model just sees
each window as a separate training instance.

3.3 Definition of feedforward network function

Each window’s vectors are given as input to a single neural network layer
(called a “hidden layer”) which has dimensionality H. This layer is used as
features for a logistic regression classifier which will return the probability
that the center word belongs to either of the two classes. For the first window,
the feed-forward equations are as follows:

z = W

 xs
x1
x2

+ b(1) (1)

a = f(z) (2)

h = g(UTa+ b(2)). (3)

The final prediction h is x1’s probability of being a PERSON. Let us define all
the involved notation: the model parameters W,U and the model functions
f, g. We have the following neural network parameters: W ∈ RH×Cn. For
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our case with a window size of C = 3 and if we have a reasonable hidden
layer size such as H = 100, we get W ∈ R100×150. The bias of the hidden
layer is b(1) ∈ RH×1 and the bias of the logistic regression b(2) is a scalar. The
parameters for the logistic regression weights then have to be U ∈ RH×1.
Note that you could also add a single 1 to a a and use U ∈ R(H+1)×1, in other
words including the bias term b(2) inside U .

The nonlinearity function f can be either the sigmoid function of the
hyperbolic tanh function. For your default choice, please use tanh. One
useful property of tanh is that its derivative can be expressed in terms of the
function value itself (instead of original input):

d

dx
tanhx = 1− tanh2 x (4)

The function g needs to return a probability so we will always use the
sigmoid function:

g(z) = sigmoid(z) =
1

1 + e−z
(5)

Now, let us summarize this whole procedure, the network and its inputs by
the following notation. The training inputs consist of a set of (window,label)
pairs (x(i), y(i)), with i ranging from 1 to the length of your training corpus.
Each x(i) = [xi−1, xi, xi+1] (note the difference in notation between super-
script and subscript) and y(i) ∈ {0, 1}. We define θ to hold all network
parameters: θ = (L,W, b(1), U, b(2)). Using this notation, we can now define
the entire neural network in one function:

hθ(x
(i)) = g

UTf

W
 xi−1

xi
xi+1

+ b(1)

+ b(2)

 (6)

TODO: Implement this feedforward function h.

3.4 Random initialization

When you implement the feedforward function you notice that you need the
parameters of the model. In the beginning you initialize these parameters
randomly. One effective strategy for random initialization is to randomly
select values for W uniformly in the range [−εinit, εinit]. One effective strategy
for choosing εinit is to base it on the number of units feeding into the layer
and the number of units of this current layer. A good choice of εinit is

εinit =

√
6√

fanIn+ fanOut
, (7)
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where fanIn = nC and fanOut = H in our case. This range of values
ensures that the parameters are kept small and makes the learning more ef-
ficient. You can initialize the biases to zero.
TODO: You need to randomly initialize all the parameters of your model,
except L.
Hint: Use the function SimpleMatrix.random from the SimpleMatrix li-
brary that we provide with the code. You can read more about this library
at http://code.google.com/p/efficient-java-matrix-library/.

3.5 Cost function

In logistic regression we want to maximize the log-likelihood of our parame-
ters given all our (say m) data samples:2

`(θ) = log
m∏
i=1

p(y(i)|x(i); θ) (8)

= log
m∏
i=1

(
hθ(x

(i))
)y(i) (

1− hθ(x(i))
)1−y(i)

(9)

=
m∑
i=1

y(i) log hθ(x
(i)) + (1− y(i)) log(1− hθ(x(i))) (10)

By convention of many optimization techniques, we will minimize the nega-
tion of log-likelihood instead. Therefore, our (almost) final cost function for
the neural network is

J(θ) =
1

m

m∑
i=1

[
−y(i) log(hθ(x

(i)))− (1− y(i)) log(1− hθ(x(i)))
]
,

3.6 Regularized cost function

As discussed in the lecture, we should put a Gaussian prior, paramaterized
by C on our parameters to prevent overfitting. The cost function for neural
network with regularization is given by

2If this is confusing, please refer to the lecture slides on the MaxEnt model or these
class notes: cs229.stanford.edu/notes/cs229-notes1.pdf.
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J(θ) =
1

m

m∑
i=1

[
−y(i) log(hθ(x

(i)))− (1− y(i)) log(1− hθ(x(i)))
]

+

C

2m

[
nC∑
j=1

H∑
k=1

W 2
k,j +

H∑
k=1

U2
k

]

The larger C is the more the regularization pushes the weights of all our
parameters to zero.

Note that you should not be regularizing the terms that correspond to
the bias. Notice that you can first compute the unregularized cost function
J and then later add the cost for the regularization terms.

4 Backpropagation Training

In this part, you will implement the backpropagation algorithm to compute
the gradient for the neural network cost function. Once you have computed
the gradient, you will be able to train the neural network by minimizing the
cost function J(θ) using a simple optimization technique called stochastic
gradient descent (SGD).

You will first implement the backpropagation algorithm to compute the
gradients for the parameters for the (unregularized) neural network. After
you have verified that your gradient computation for the unregularized case
is correct, you will implement the gradient for the regularized neural network.

Recall that the intuition behind the backpropagation algorithm is as fol-
lows. Given a training example (x(i), y(i)), we will first run a “forward pass”
to compute all the activations throughout the network, including the output
value of the hypothesis hθ(x). Once we have the prediction, we will compute
the binary cross-entropy error. Then, for each node j in the hidden layer,
we would like to compute an “error term” δj that measures how much that
node was “responsible” for the cross-entropy error.

Deriving the full algorithm with all the gradients is the challenge for this
assignment. You need to follow similar steps as in the lecture where we
described the derivatives of single elements of the unsupervised word vector
learning model and then generalized it to the gradients of the full matrices.
The only difference is that we now have a logistic regression classifier instead
of a linear score. The rest of the model is the same to the one derived in the
lecture.
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TODO: Derive all the following gradients (and include them either in
your pdf or hardcopy):

∂J(θ)

∂U
,
∂J(θ)

∂W
,
∂J(θ)

∂b
,
∂J(θ)

∂L
(11)

Note that the gradient of L is a short form for taking the derivative of each
word vector that appears in each window. So, you find the index of each
word in a window (let’s call it index v) and then you only update the column
at that index. In Matlab notation, you can retrieve that index simply by
L(:, v).

TODO: Implement these gradients such that you can compute them for
any window in your training data.

4.1 Gradient checking

Deriving these gradients and implementing them correctly is no easy task.
Fortunately, these kinds of models have the awesome property that you can
check whether your implementation is bug-free using gradient checks.

In your neural network, you are minimizing the cost function J(θ). To
perform gradient checking on your parameters, you can imagine “unrolling”
the parameters θ into a long vector. Then you can use the following gradient
checking procedure.

Suppose you have a function fi(θ) that purportedly computes ∂
∂θi
J(θ);

you’d like to check if fi is outputting correct derivative values.

Let θ(i+) = θ +



0
0
...
ε
...
0


and θ(i−) = θ −



0
0
...
ε
...
0


So, θ(i+) is the same as θ, except its i-th element has been incremented by

ε. Similarly, θ(i−) is the corresponding vector with the i-th element decreased
by ε. You can now numerically verify fi(θ)’s correctness by checking, for each
i, that:

fi(θ) ≈
J(θ(i+))− J(θ(i−))

2ε
.

The degree to which these two values should approximate each other will
depend on the details of J . But assuming ε = 10−4, you’ll usually find that
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the left- and right-hand sides of the above will agree to at least 4 significant
digits (and often many more).

TODO: Implement this gradient check, apply it to a small set of 10 win-
dows and make sure that your gradient is correct by comparing the norm
of the differences between your gradient and the numerically computed one.
The difference should be less than 10−7.

Practical Tip: When performing gradient checking, it is much more
efficient to use a small neural network with a relatively small number
of input units and hidden units, thus having a relatively small number
of parameters. Each dimension of θ requires two evaluations of the cost
function and this can be expensive. So you can set H = 2 for instance.
Furthermore, after you are confident that your gradient computations are
correct, you should turn off gradient checking before running your learning
algorithm.

4.2 Learning parameters with SGD

After you have successfully implemented the neural network cost function
and gradient computation, the next step is use SGD to learn a good set
parameters.

The idea of SGD is really simple, instead of minimizing the full cost
function J(θ) over the entire dataset, you simply take derivatives over only
a single data sample (a single window).

Then you update all your parameters by taking one single step in the
right direction. The algorithm runs through say K = 2 iterations of the
following procedure:

For all windows i = 1, . . . ,m, update parameters by:

U (t) = U (t−1) − α ∂

∂U
Ji(U) (12)

b(2)
(t)

= b(2)
(t−1) − α ∂

∂b
Ji(b

(2)) (13)

W (t) = W (t−1) − α ∂

∂W
Ji(W ) (14)

b(1)
(t)

= b(1)
(t−1) − α ∂

∂b
Ji(b

(1)) (15)

L(t) = L(t−1) − α ∂

∂L
Ji(L), (16)
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where α is the learning rate (a good one to try is α = 0.001) and we define
Ji to be the cost of only the ith sample. Note again, that in each window
of size C you only have updates for C word vectors (i.e. columns in L). So,
if the C words have indices into the vocabulary (v1, v2, . . . , vC), then your L
update will merely update the columns at these indices!

L(:, v1)
(t) = L(:, v1)

(t−1) − α ∂

∂L(:, v1)
Ji(L(:, v1)) (17)

...

L(:, vC)(t) = L(:, vC)(t−1) − α ∂

∂L(:, vC)
Ji(L(:, vC)) (18)

After the training completes you will proceed to report the training and
testing accuracy of your classifier by computing the F1 score of examples it
got correct. If your implementation is correct, and with hidden layer size
H = 100, window size C = 5 and learning rate α = 0.001 , you should see a
testing F1 score of at very least 61.0%.

TODO: Implement SGD training and report your initial training and
testing F1 scores. Your code should not take about 15 minutes to train and
test on a standard laptop.

5 Network Analysis

It is possible to get higher training accuracies by trying out different values
of:

1. the regularization constant C,

2. the learning rate α,

3. the window size C,

4. the hidden layer size H,

5. the number of iterations through the dataset K,

6. training the word vectors or keeping them fixed or

7. other ideas you have
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TODO: Vary at least 3 of these hyperparameters (by going up and down
from the initial values we gave you above) and show plots of how training and
testing F1 scores change. Can you make the model overfit? Is it underfitting?

The above hyperparameters should almost always be tuned when you
work with neural networks. Below, we have some more difficult analyses.

TODO: Submit one of the following three, implement or derive it and
include it in your submission.

1. Visualizing the word vectors before and after training with the t-sne
algorithm http://homepage.tudelft.nl/19j49/t-SNE.html and de-
scribe differences.

2. Add an extra layer to the neural network and report changes in training
and testing F1 scores. The overall network would look something like
this:

hθ(x
(i)) = g

UTf

W (2)f

W (1)

 xi−1

xi
xi+1

+ b(1)

+ b(2)

+ b(3)


(19)

You will use the same cross-entropy error as above. If you can derive the
necessary equations and implement this function you will have mastered
the full backpropagation algorithm in all its glory.

3. Prove that a softmax classifier for 2 classes is equivalent to a logistic
regression classifier with only a single weight vector.

Extra Credit TODO: For every additional one you do (on top of the
one everybody has to do), you will get 10 extra credit points.

Extra Credit TODO: The group that gets the highest F1 score will get
an additional 10 extra credits.

6 Tips and Tricks

This model was introduced by Collobert et al. You can read about the model
details and variants in their paper [2].

The first token in the vocabulary file is the unknown word token that you
will also use for words that are in your training or dev sets but which are not
in the original vocabulary file.
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We include in the starter code, the efficient Java matrix library (ejml)
package. If you save all matrices of your model (L,W, b(1), U, b(2)) in that
format and create a few helper functions, you can write almost pseudo code
for the major forward and backprop equations.

If you’re familiar with matlab, this will help:
http://code.google.com/p/efficient-java-matrix-library/wiki/MatlabFunctions

More information on logistic regression can be found in the class notes of
CS229: cs229.stanford.edu/notes/cs229-notes1.pdf

More tutorial materials on neural networks, the backpropagation algo-
rithm and gradient checks can be found in the first three links of this tutorial
website: http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial.

You can find a very detailed derivation of the full backpropagation algo-
rithm (for a deep neural network with an arbitrary number of layers) in sec-
tion 4 of this document: http://nlp.stanford.edu/~socherr/deepLearningDerivations.
pdf

7 Grading

Part Points
Feedforward and Cost Function 20 points
Gradients for cost function of neural
network

20 points

Gradient for regularized cost func-
tion

10 points

Gradient check 10 points
SGD training 10 points
Network analysis experiments, plots
and report

30 points

Total points 100 points
Maximum possible extra credits 30 points

8 Submitting the assignment

8.1 The program: electronic submission

You will submit your program code using a Unix script that we have pre-
pared. To submit your program, first put all the files (but not the 4 files in
the data directory) to be submitted in one directory on a Leland machine (or
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any machine from which you can access the Leland AFS filesystem). This
should include all source code files, but should not include compiled class
files or large data files. Normally, your submisssion directory will have a
subdirectory named src which contains all your source code. When you’re
ready to submit, please cd to your submission directory, and then type:

/afs/ir/class/cs224n/bin/submit-pa4

This will (recursively) copy everything in your submission directory into
the official submission directory for the class. If you need to resubmit it type

/afs/ir/class/cs224n/bin/submit-pa4 -replace

We will compile and run your program on the Leland systems, using ant
and our standard build.xml to compile, and using java to run. So, please
make sure your program compiles and runs without difficulty on the Leland
machines. If there’s anything special we need to know about compiling or
running your program, please include a README file with your submission.

Your code doesn’t have to be beautiful but we should be able to scan it
and figure out what you did without too much pain.

8.2 The report: turn in a hard copy

You should turn in a write-up of the work you have done, as well as the code.
The write-up should specify what you built and what choices you made, and
should include the accuracies, etc., of your systems. If you are an on-campus
student, your write-up must be submitted as a hard copy. Hard copies may
be submitted in class, or in the box outside Professor Manning’s office. SCPD
students may submit the write-up electronically on CourseWare.

There is no set length for write-ups, but a ballpark length might be 8
pages, including your evaluation results, a graph or two, error analysis, and
some interesting examples. Your write-up should not exceed 15 pages in
length.
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